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Fermi resonance and its effect on the mean transition time and rate are studied. The necessary frequency
ratio 1:2 for Fermi resonance to occur is explained by applying the deterministic averaging method to the
two-dimensional conservative Pippard system, and a more frequent fluctuation of energy process due to Fermi
resonance is shown by using the samples obtained from digital simulation of the stochastic Pippard system. In
the case of weak coupling, the mean transition time of the reacting oscillator energy is evaluated for both
nonresonance and Fermi resonance by using the standard �Stratonovich� stochastic averaging method. The
theoretical results for the mean transition time in the case of Fermi resonance and nonresonance is then
extended to the stochastic system with bistable potential, and the effects of frequency ratio and coupling
coefficient on the mean reaction rate are analyzed. In the case of strong coupling, it is pointed out that the
exciting oscillator and reacting oscillator move together like one oscillator and no Fermi resonance can occur.
In this case, the mean transition rate of the system total energy is studied by using the stochastic averaging
method for quasi-non-integrable Hamiltonian systems. All the theoretical results are confirmed through com-
parison with those from digital simulation, and the effect of Fermi resonance on the transition time and rate is
discussed.
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I. INTRODUCTION

Fermi resonance gets its name from the classical work of
Enrico Fermi on the Raman effect in CO2 molecule �1�. Ac-
cording to Fermi’s description, the three atoms in CO2 mol-
ecule are three oscillators in one line with three natural fre-
quencies. The ratio between two of the three natural
frequencies is about 1:2. Due to the couplings between these
two oscillators, there exists a specific resonant phenomenon
called Fermi resonance. Fermi resonance was subsequently
found in NaCl crystal �2� and, most significantly, in the pro-
tein macromolecules �3,4�. The late Mikhail Volkenstein first
discussed Fermi resonance in peptide binding and indicated
that it plays an important role in the functioning of an en-
zyme �5,6�. By establishing a two-dimensional oscillator and
then introducing the coupling term x2y to the potential, Fermi
set up a simple model in 1931 �1,2�. Since then, many kinds
of two-dimensional models have been set up for different
research topics �3,6–11�. The physical pendulum is a classi-
cal model used by Volkenstein for analogy of Fermi reso-
nance �3�. The dynamics of a particle bounded by four linear
springs to four immobile walls was used for the investigation
of Fermi resonance in a cluster model �4,7�. The energy ex-
change between the two coupled oscillators was proposed as
a kind of promoting mechanism for the process in enzyme
catalysis �8,9�. The Pippard model may be the most popular
model for its pellucid physical meaning �10�. Recently, the
fading of the energy between the two oscillators in Fermi
resonance was investigated by performing a simulation of
the Pippard model �12�. Then, as a new application, the in-
fluence of Fermi resonance on enzymatic reaction about pep-
tide bond breaking and the escape of product from the active

site were studied �12�. Many model investigations of Fermi
resonance show the typical dynamical behavior that the rate
of transition over a potential barrier in one oscillator in-
creases under the effect of the other oscillator. According to
this behavior, the mechanism of enzymatic reaction may be
properly explained by using Fermi resonance taking place at
a specific site of the enzyme, which often has the form of a
“pocket.” At the reaction site, the local “reactive dynamics”
connected with “barrier crossing” is coupled to other oscil-
lating degrees of freedom �11�. Note that almost all the re-
sults about Fermi resonance were obtained from computer
simulation rather than theoretical method.

In the present paper, the necessary frequency ratio 1:2 for
Fermi resonance is explained by applying the deterministic
averaging method to a two-dimensional conservative Pippard
model �10�. The typical energy fading phenomenon of Fermi
resonance is observed from the samples obtained from the
digital simulation of the dissipative Pippard system subjected
to stochastic force. For the quasilinear Pippard system with
weak coupling, the theoretical analysis of Fermi resonance is
made by using the standard stochastic averaging method
�13�, and the mean transition time of energy in both cases of
nonresonance and Fermi resonance is obtained by solving
the averaged Pontryagin equation. The effects of coupling
coefficient and frequency ratio on the mean transition time
are discussed by using simulation results and theoretical re-
sults. The theoretical analysis is then extended to the system
with two-dimensional bistable potential �11,12�. In the case
of stronger coupling, the coupled exciting and reacting oscil-
lators are treated as one oscillator and the stochastic averag-
ing method for quasi-non-integrable Hamiltonian systems is
applied to obtain the energy-controlled transition rate
�14,15�. It is pointed out that no Fermi resonance can occur
in the strong-coupling case. All the theoretical results are
confirmed by using digital simulation.*wqzhu@yahoo.com
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II. FERMI RESONANCE

The popular model for studying Fermi resonance in the
peptide binding is a test particle in a two-dimensional poten-
tial U�x1 ,x2� under action of noise and damping governing
by the following Langevin equation �11�:

mẌ1 + �Ẋ1 + �U�X1,X2�/�X1 = �2D�1�t� ,

mẌ2 + �Ẋ2 + �U�X1,X2�/�X2 = �2D�2�t� , �1�

where X1 is the displacement of a reacting oscillator while X2
is the displacement of an exciting oscillator; � is a constant
damping coefficient; �1�t� ,�2�t� are Gaussian white noises in
the sense of Stratonovich with correlation functions

E��1�t��1�t + t��� = ��t�� ,

E��2�t��2�t + t��� = ��t��, E��1�t��2�t + t��� = 0, �2�

in which ��t�� is the Dirac delta function. In Eq. �1�, the
fluctuation dissipation theorem or the Einstein relation D
=�kBT is applied for simulating the thermal bath, where kB is
the Boltzmann constant and T is the temperature. The popu-
lar Pippard potential in the investigation of Fermi resonance
is �10�

U�x1,x2� = �1
2x1

2/2 + �2
2�x2 − cx1

2�2/2. �3�

As shown in Fig. 1, potential �3� is symmetric with respect to
x1 and asymmetric with respect to x2. For convenience of
analysis, hereafter all the variables are made to be nondimen-
sional, i.e., m=1, kB=1, and D=�T. By introducing potential
�3� into Eq. �1�, the Pippard model with two coupled oscil-
lators reads

Ẍ1 + �Ẋ1 + �1
2X1 − 2c�2

2X1X2 + 2c2�2
2X1

3 = �2�T�1�t� ,

Ẍ2 + �Ẋ2 + �2
2X2 − c�2

2X1
2 = �2�T�2�t� , �4�

where c is usually called the coupling coefficient denoting
the coupling strength between the two oscillators.

The pioneering work of Fermi on Fermi resonance is
about Raman spectra of gaseous CO2 by means of the per-
turbation method �1�. Fermi reported the approximate fre-

quency ratio 1:2 �i.e., 667.5 cm−1 vs 1330 cm−1� between
two of the three natural frequencies in the CO2 molecule and
the resulting energy exchange between the two oscillators.
To study Fermi resonance in the vibration of H bonds in
enzyme, the ratio 1:2 was introduced to a basic two-
dimensional cluster model with a particle bound by four lin-
ear springs to four immobile walls �4,7,11�. In the following,
by analyzing the Pippard model system �4� in the conserva-
tive case, we explain why the frequency ratio 1:2 is neces-
sary for Fermi resonance to occur. And then, by performing
digital simulation of system �4� in the stochastic case, we
show how the Fermi resonance makes the energy process
different.

Considering the Pippard model �4� without damping and
noises, and introducing the frequency ratio �1 :�2=n :m, we
obtain the following conservative system:

ẍ1 + �1
2x1 − 2c�2

2x1x2 = 0, ẍ2 + �2
2x2 − c�2

2x1
2 = 0, �5�

where n and m are mutual prime positive integers, and
2c2�2

2x1
3 is neglected since it contains a higher order of small

coupling coefficient c.
Following the well-known deterministic averaging

method for quasilinear systems �16�, we introduce the trans-
formation

xi = ai�t�cos �i�t� ,

(b)

(a)

FIG. 2. Two stationary samples obtained from digital simulation
of stochastic Pippard system �4� with �=0.01, �T=0.01, �1=1, and
c=0.1. More frequent energy fluctuation can be observed in the
resonant case �b� than in the nonresonant case �a�.

FIG. 1. Contour of Pippard potential �3� with c=0.1, �1=1, and
�2=2�1. The numbers in the figure are the potential values.
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ẋi = − �iai�t�sin �i�t�, �i�t� = �it + �i�t�, i = 1,2. �6�

The nonlinear parts of the restored force in conservative sys-
tem �5� are extracted out, and then let

f1�x, ẋ� = − 2c�2
2x1x2, f2�x, ẋ� = − c�2

2x1
2, �7�

where x= �x1 ,x2� and ẋ= �ẋ1 , ẋ2�. Substituting Eqs. �6� and
�7� into Eq. �5� and then applying the averaging leads to the
following equations for amplitudes a1, a2 and phase angle
�1, �2:

da1/dt = ��1
−1f1 sin �1	t, da2/dt = ��2

−1f2 sin �2	t,

d�1/dt = ��a1�1�−1f1 cos �1	t, d�2/dt = ��a2�2�−1f2 cos �2	t,

�8�

where �·	t denotes time averaging. Introducing the phase
angle difference �= �m /n��1−�2 and replacing the time av-
eraging in Eq. �8� by the phase averaging 
0

2	�·�d�1 /2	, we
obtain the reduced expression for da1 /dt. Moreover, accord-
ing to de1 /dt=�1

2a1da1 /dt, the time rate de1 /dt for energy
e1=�1

2a1
2 /2 can be obtained as follows:

de1

dt
=

− ce1
�2e2m2�4n sin�m	�sin�m	 − �/n� + m sin�4n	�sin��/n��

2	n2�4n2 − m2�
. �9�

By analyzing Eq. �9�, de1 /dt is reduced to

de1

dt
= �− 2ce1

�2e2 sin �, n:m = 1:2,

0, n:m � 1:2.
�10�

Since de2 /dt=−de1 /dt, the de2 /dt and d� /dt with n :m
=1:2 can be obtained as follows:

de2

dt
= 2ce1

�2e2 sin �,
d�

dt
=

�2c�e1 − 2e2�cos �

�e2

.

�11�

It is seen from Eqs. �10� and �11� that de2 /dt=−de1 /dt�0
only when �1 :�2=1:2. In other words, the frequency ratio
�1 :�2=1:2 is necessary for energy exchange to occur be-
tween the two oscillators.

Digital simulation for the original system �4� was per-
formed. The independent Gaussian white noises �i�t� were
generated by using the Box-Muller method �17�. Then, the
response was solved numerically by using the fourth-order
Runge-Kutta method with time step 0.05. Two samples from
digital simulation of stochastic system �4� in �1 :�2=1:1 and
1:2 are shown in Figs. 2�a� and 2�b�, respectively. It is seen
that in the case of Fermi resonance, energy process E1�t�
fluctuates more frequently and significantly than in the non-
resonant case. Similar numerical results were reported in
Ref. �12�, where the rather large amplitudes occur from time
to time in the first oscillator.

III. MEAN TRANSITION TIME OF REACTING
OSCILLATOR ENERGY

The typical phenomenon of Fermi resonance is the fading
of the energy between the exciting and reacting oscillators
�12�. Due to this energy fading, the random transition of the
reacting oscillator over an energy threshold value happens
with more probability. In the following, the mean time of
transition over an energy threshold value of the reacting os-

cillator is predicted theoretically by using the standard sto-
chastic averaging method �13�. Nonresonant and resonant
cases are considered separately to illustrate the effect of
Fermi resonance.

Let the nonlinear parts of the restored force and damping
forces in system �4� be

F1�X,Ẋ� = �Ẋ1 − 2c�2
2X1X2, F2�X,Ẋ� = �Ẋ2 − c�2

2X1
2,

�12�

where the term 2c2�2
2X1

3 with higher order of small parameter
c2 is neglected. Under the assumption of �→0, the solution
of stochastic system �4� is assumed to be of the form

Xi = Ai�t�cos 
i�t� ,

Ẋi = − �iAi�t�sin 
i�t�, 
i�t� = �it + �i�t�, i = 1,2.

�13�

Here the amplitudes Ai, phase angle 
i, and �i are all sto-
chastic processes. Regarding Eq. �13� as a transformation

from Xi,Ẋi to Ai,
i, Eq. �4� can be converted into the follow-
ing first-order differential equations:

Ȧ1 = F1
A + G11

A �1�t�, 
̇1 = �1 + F1
� + G11

� �1�t� ,

Ȧ2 = F2
A + G22

A �2�t�, 
̇2 = �2 + F2
� + G22

� �2�t� , �14�

where

F1
A = F1 sin 
1/�1, G11

A = − �2�T sin 
1/�1,

F1
� = F1 cos 
1/A1�1, G11

� = − �2�T cos 
1/A1�1,

F2
A = F2 sin 
2/�2, G22

A = − �2�T sin 
2/�2,
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F2
� = F2 cos 
2/A2�2, G22

A = − �2�T cos 
2/A2�2.

�15�

In stochastic system �14�, 
1 and 
2 are rapidly varying
processes while A1 and A2 are slowly varying ones. The av-
eraged equations depend upon whether system �4� is reso-
nant or nonresonant.

A. Non-resonant case

Suppose that �1 :�2 is far from 1:2. According to the
Khasminskii’s theorem �18�, the amplitudes A1 and A2 in
system �14� converge in probability to a two-dimensional
Markov diffusion process. The averaged Fokker-Planck-
Kolmogorov �FPK� equation governing the transition prob-
ability density p= p�A , t �A0 , t0� is

�p

�t
= −

�

�Ai
�aip� +

1

2

�2

�Ai � Aj
�bijp�, i, j = 1,2, �16�

where A= �A1 ,A2� and the drift coefficients and diffusion
coefficients are

ai�A� = 
Fi
A + Dkl

�Gik
A

�Aj
Gjl

A + Dkl

�Gik
A

�� j
Gjl

��
t
,

bij�A� = �2DklGik
AGjl

A	t with i, j,k,l = 1,2. �17�

The difficult time averaging in Eq. �17� can be replaced by
the following space averaging with respect to the phase
angles 
1 and 
2:

�·	t =
1

4	2�
0

2	 �
0

2	

�·�d
1d
2. �18�

Note that D11=D22=�T and Dkl=0 for k� l since the two
Gaussian white noises �1�t� ,�2�t� are independent and of the
same intensity. Substituting Eq. �15� into Eq. �17� leads to
bij =0 for i� j, and

a1 = −
�A1

2
+

�T

2A1�1
2 , a2 = −

�A2

2
+

�T

8A2�1
2 ,

b11 =
�T

�1
2 , b22 =

�T

4�1
2 . �19�

The amplitudes A1 ,A2 and the energies E1 ,E2 of the two
oscillators in system �4� are related as follows:

E1 = �1
2A1

2/2, E2 = �2
2A2

2/2. �20�

Thus, the drift coefficients āi and diffusion coefficients b̄ii of
the FPK equation describing the transition probability den-
sity p�E , t �E0 , t0� of the energy diffusion process E
= �E1 ,E2�T can be obtained by using the Itô differential rule
�19� as follows:

ā1 = �T − �E1, ā2 = �T − �E2, b̄11 = 2�TE1,

b̄22 = 2�TE2. �21�

In this section, we are interested in the mean time of transi-
tion over an energy threshold value of the reacting oscillator.

The Pontryagin equation governing the mean transition time
is �20�

ā1�E10�
��

�E10
+ ā2�E20�

��

�E20
+

1

2
b̄11�E10�

�2�

�E10
2

+
1

2
b̄22�E20�

�2�

�E20
2 = − 1, �22�

where ��E10,E20� is defined as the mean time of energy pro-
cess E1�t� in the reacting oscillator reaches a threshold value
EC for the first time given the initial energies 0
E10�EC,
0
E20. The boundary conditions associated with Eq. �22�
are

��E10 = 0,E20� = finite, ��E10 = EC,E20� = 0, �23�

��E10,E20 = 0� = finite, ��E10,E20 → � � = finite.

�24�

Fortunately, Eq. �22� can be solved exactly under the bound-
ary conditions �23� and �24�. The exact solution is

��E10,E20� =
1

�
�

E10/T

EC/T et − 1

t
dt . �25�

B. Resonant case

In the resonance domain, i.e., �1 :�2�1:2, except for the
amplitudes A1 and A2, there exists another slowly varying
process, i.e., the phase angle difference ��t�=2
1−
2,
which is governed by the differential equation

�̇ = 0��� + �F3
A + �1/2G31

A �1�t� + �1/2G32
A �2�t� , �26�

where F3
A=2F1

�−F2
�, G31

A =2G11
� , and G32

A =−G22
� ; � is a small

parameter. For investigating the effect of a small deviation of
the frequency ratio from �1 :�2=1:2, we replace the fre-
quency ratio in Eq. �4� by �2 /�1=2+�, where � is a small
parameter. The nonlinear parts of the restoring force and
damping forces in system �4� in this case are

F1�X,Ẋ� = �Ẋ1 − 2c��2
2 + 2��1�2�X1X2,

F2�X,Ẋ� = �Ẋ2 − c��2
2 + 2��1�2�X1

2 + 2��1�2X2, �27�

where the higher-order small terms with c2 or �2 are
neglected. According to Khasminskii’s theorem �18�,
A= �A1 ,A2�T and � converge in probability to a
three-dimensional Markov diffusion process. The FPK
equation governing the transition probability density
p= p�A ,� , t �A0 ,�0 , t0� is

�p

�t
= −

�

�Ai
�aip� −

�

��
�a3p� +

1

2

�2

�Ai � Aj
�bijp� +

1

2

�2

��2 �b33p�

+
1

2

�2

�Ai � �
�bi3p� +

1

2

�2

�� � Aj
�b3jp�, i, j = 1,2, �28�

where the drift coefficients and diffusion coefficients are
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ai�A,�� = 
Fi
A + Dkl

�Gik
A

�Aj
Gjl

A + Dkl

�Gik
A

�� j
Gjl

��
t

with i = 1,2,3, j,k,l = 1,2,

bij�A,�� = �2DklGik
AGjl

A	t with i, j = 1,2,3, k,l = 1,2.

�29�

Again, the time averaging can be replaced by the following
space averaging with respect to the phase angle 
1:

�·	t =
1

2	
�

0

2	

�·�d
1. �30�

Note that D11=D22=�T and Dkl=0 for k� l. Substituting
Eqs. �15� and �26� into Eq. �29� leads to bij =0 for i� j. The
other coefficients are reduced to

a1 = −
�A1

2
+

�T

2A1�1
2 − 2c�1 + ��A1A2�1 sin � ,

a2 = −
�A2

2
+

�T

8A2�1
2 +

1

2
c�1 + ��A1

2�1 sin � ,

a3 = − ��1 +
c�1 + ���1�A1

2 − 8A2
2�cos �

2A2
,

b11 =
�T

�1
2 , b22 =

�T

4�1
2 , b33 =

4�T

A1
2�1

2 +
�T

4A2
2�1

2 . �31�

The FPK equation describing the transition probability
density p�E ,� , t �E0 ,�0 , t0� of diffusion process �E1 ,E2 ,��T

can also be set up by using relation �20�, and its drift coef-

ficients āi and diffusion coefficients b̄ii are obtained from Eq.
�31� by using the Itô differential rule �19� as follows:

ā1 = �T − �E1 − 2c�1 + ��E1
�2E2 sin � ,

ā2 = �T − �E2 + 2c�1 + ��E1
�2E2 sin � ,

b̄11 = 2�TE1, b̄22 = 2�TE2. �32�

Define � as the mean time of energy process E1�t� in the
reacting oscillator reaches a threshold value EC for the first
time given the initial energy 0
E10�EC, 0
E20, and initial
phase angle difference �0. The Pontryagin equation govern-
ing � can be derived from Eq. �28� as follows �20�:

ā1
��

�E10
+ ā2

��

�E20
+ a3

��

��0
+

1

2
b̄11

�2�

�E10
2 +

1

2
b̄22

�2�

�E20
2

+
1

2
b33

�2�

��0
2 = − 1. �33�

The boundary conditions associated with Eq. �33� are

��E10 = 0,E20,�0� = finite, ��E10 = EC,E20,�0� = 0,

�34�

��E10,E20 = 0,�0� = finite, ��E10,E20 → � ,�0� = finite,

�35�

��E10,E20,�0 = 2	� = ��E10,E20,�0 = 0� . �36�

It is difficult to obtain the exact analytical solution to Eq.
�33�. For convenience to obtain numerical solution, the sec-
ond boundary condition at infinite in Eq. �35� is converted to
the following boundary condition at some finite place using

the transformation Ē20=1−exp�−E20�:

��E10,Ē20 = 0,�0� = finite, ��E10,Ē20 = 1,�0� = finite.

�37�

The Pontryagin equation �33� should be correspondingly
changed to

ā1
��

�E10
+ a�2

��

�Ē20

+ a3
��

��0
+

1

2
b̄11

�2�

�E10
2 +

1

2
b�22

�2�

�Ē20
2

+
1

2
b33

�2�

��0
2 = − 1, �38�

where the two new coefficients a�2�E10, Ē20,�0� and

b�22�E10, Ē20,�0� are obtained from ā2 and b̄22 in Eq. �32� by
using the Itô differential rule �19� as follows:

a�2 = ā2
d

dE2
�1 − e−E2� +

1

2
b̄22

d2

dE2
2 �1 − e−E2� ,

b�22 = � d

dE2
�1 − e−E2��2

b̄22. �39�

Some numerical results shown in Fig. 3 are obtained from
solving Eq. �38� together with boundary conditions �34�,
�36�, and �37�. The number in the figures is the value of the
mean transition time �. Figure 3 shows that the mean time of
the transition of the reacting oscillator over an energy thresh-
old value decreases as initial energy E10 of the reacting os-

cillator or Ē20 of the exciting oscillator increases. With re-
gard to the initial phase angle difference �0, the mean
transition time is minimum at �0=3	 /2 and maximum at

�0=	 /2 when E10 and Ē20 are kept unchanged. It can be
seen from Eq. �32� that when �=0, ā1 reaches its maximum
at �0=3	 /2, which means the rate of input energy, dE1 /dt,
in reacting oscillator reaches its maximum. As a result, the
mean time � of transition of the reacting oscillator over an
energy threshold value EC reduces to its minimum. The mean
time � reaching its maximum at �0=	 /2 can be explained
similarly. To check the accuracy of the theoretical result
shown in Fig. 3, the digital simulation of original system �4�
was conducted. For each sample, the time of transition of
E1�t� over an energy threshold value EC is recorded. For

given E10, Ē20, and �0, the mean time is then obtained from
averaging the transition times for 2000 samples. Figure 4
shows some simulation results for the same parameters as
those in Fig. 3. It is seen that good agreement between the
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theoretical results in Figs. 3�c� and 3�g� and corresponding
simulation results in Figs. 4�a� and 4�b�, respectively, is
achieved.

In the resonant case, coupling coefficient c plays an im-
portant role in energy exchange between reacting oscillator
and exciting oscillator. Figure 5 shows how the mean transi-
tion time � varies with c for two EC values. It is seen that the
mean transition time � increases as EC increases, while it
decreases as the coupling coefficient c increases. This im-
plies that Fermi resonance really enhances the transition of
the reacting oscillator. However, it should be pointed out that
as c gradually increases, the theoretical results become
doubtful since the stochastic averaging is based on the as-
sumption of weak coupling between reacting oscillator and
exciting oscillator. The mean transition time � for frequency
�2 varying from 10−2�1 to 102�1 is shown in Fig. 6. The
long dashed line �−−� and solid line �——� denote the theo-
retical results in the case of nonresonance, which are ob-
tained from Eq. �25�. The short dashed line �------� and dash-
dotted line �−-− � denote the theoretical results in the case of
resonance, which are obtained by solving Eq. �38�. The sym-
bols • and � denote the corresponding digital simulation
results. It is seen that � reaches its minimum at Fermi reso-

nance frequency �2=2�1. Comparing with the nonresonant
case, it is shown that Fermi resonance can reduce the mean
transition time by about 62.1% for theoretical results and
64.8% for simulation results when EC=1, and about 54.1%
for theoretical results and 53.2% for simulation results when
EC=2. The agreement between the theoretical results and the
digital simulation results illustrates the applicable ranges of
the exact solution in Eq. �25� for the nonresonant case and

FIG. 3. Mean transition time � as functions of initial energy E10,

Ē20, and initial phase angle �0 obtained from solving Eq. �38�. The
parameters are c=0.1, �=0, �=0.01, �T=0.01, EC=1, �1=1, and
�2=2�1. The numbers in the figures are the mean time �, which is
symmetric with respect to �0=	 /2 and 3	 /2 and reaches its maxi-
mum and minimum at �0=	 /2 and 3	 /2, respectively.

FIG. 4. Mean transition time � as functions of initial energy E10,

Ē20, and initial phase angle �0 obtained from digital simulation of
system �4� with the same parameters as those in Fig. 3. The simu-
lation results in �a� and �b� fit well the theoretical results shown in
Figs. 3�c� and 3�g�, respectively.

FIG. 5. Mean transition time � of system �4� as a function of
coupling coefficient c. The parameters are �=0, �=0.01, �T
=0.01, �1=1, and �2=2�1. The solid and dashed lines denote the
theoretical results, and symbols •, � denote the corresponding
simulation results.
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the numerical solution to Eq. �38� for the resonant case. For
predicting the mean transition time � in a large frequency
range of �2 varying from 10−2�1 to 102�1, it is necessary to
use Eqs. �25� and �38� alternatively in the nonresonant case
or the resonant case.

IV. EXTENSION TO A SYSTEM WITH BISTABLE
POTENTIAL

The classical Kramers reaction rate theory is based on a
model describing a test particle moving in a double-well po-
tential,

U0�x1� = ax2 − �abx1
3 + bx1

4/4. �40�

Two relevant frequencies are �0=�2a defined at the poten-
tial well bottom where the transition starts and �b=�a at the
potential well top where the transition happens. The potential
barrier height is

�U = a2/4b . �41�

The classical Kramers reaction rate theory regards the reac-
tion as a reacting particle transition over a potential barrier
due to stochastic fluctuation and yields the reaction rate
�transition rate�

kM = ���2

4
+ �b

2�1/2
−

�

2
� �0

2	�b
exp�− �U

kBT
� �42�

for moderate and large damping � regime, and

kW =
��U

kBT
exp�− �U

kBT
� �43�

for weak damping. Combining the two reaction rates, Kram-
ers arrived at an estimation for the general reaction rate �21�,

k = �kM
−1 + kW

−1�−1, �44�

which is applicable in all damping regimes.
In this section, we study the enhancement of the reaction

rate due to Fermi resonance in a system with a double-well

potential. For this purpose, we use the following two-
dimensional bistable potential model proposed by Ebeling
�11�:

U�x1,x2� = U0�x1� + ��x2 − cU0�x1��2. �45�

As shown in Fig. 7, potential �45� is symmetric with respect
to x1 and asymmetric with respect to x2. By substituting Eq.
�45� into Eq. �1�, a system with a double-well potential and
coupling between the reacting oscillator and exciting oscilla-
tor is obtained. The linear frequencies of the two oscillators
at the potential well bottom are �10=�2a and �20=�2�, re-
spectively, and �=4a corresponds to �1 :�2=1:2. Fermi
resonance would occur when a reacting particle is moving in
the domain near the potential well bottom �see Fig. 7�. Ac-
tually, the Kramers reaction rate �43� can be obtained by
using the stochastic averaging method for quasi-Hamiltonian
systems via linear approximation U0�x1��ax1

2 and high po-
tential barrier approximation �U /kBT�1 �22�. In this sec-
tion, we are going to find the applicability and precision of
the theoretical results in Sec. III in determining the reaction
rate of system �1� with potential �45�. Here the linear ap-
proximation is again used. Replacing �1 and c with �2a and
ca in Eqs. �31� and �32� and replacing EC with �U in bound-
ary condition �34�, the mean transition time � of the reacting
oscillator over potential barrier �U in the Fermi resonance
case can be predicted theoretically by solving the Pontryagin
equation �38� associated with boundary conditions �34�, �36�,
and �37�. Hereafter, the mean transition time � exactly means

the mean time ��E10, Ē20,�0� at E10=0, Ē20=0, and �0=0.
The mean time � in the nonresonant case can be obtained
from Eq. �25�. The reaction rate k is then obtained as the
inverse of the mean transition time �, i.e., k=1 /� �23�.

Some numerical results obtained from the solution to Eq.
�38�, and digital simulation, as well as Kramers’ formula �44�
are shown in Fig. 8. The solid line �——�, long dashed line
�− − �, and short dashed line �------� denote the theoretical
results obtained by solving Eq. �38� with coupling coefficient
c=0, 0.1, and 0.2, respectively. The symbols •, �, and �
denote the corresponding digital simulation results. The
dash-dotted line �−-− � denotes the theoretical results ob-
tained from Kramers’ formula �44�. Good agreement be-

FIG. 6. Mean transition time � as a function of frequency �2.
The theoretical results for the nonresonant case are obtained from
Eq. �25� while those for the resonant case are obtained from solving
Eq. �38�. c=0.1 and the other parameters are the same as those in
Fig. 5.

FIG. 7. Contour of potential �45� with a=1, b=1, �=4a, and
c=0.2. The numbers in the figure are the potential values and the
dashed line denotes the energy threshold value EC used in Sec. V.
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tween theoretical results and simulation results is achieved in
the case of weak damping and weak coupling. When cou-
pling coefficient c=0, i.e., no coupling between the two os-
cillators, the theoretical result exactly reduces to the Kramers
result. When c�0, the Fermi resonance leads to an increas-
ing of reaction rate due to the energy exchange between the
reacting oscillator and exciting oscillator. For 0
c�0.1 and
��0.01, the theoretical method used in this paper can yield
satisfactory prediction for the reaction rate of the reacting
oscillator over the potential barrier in both the nonresonant
and resonant cases. With � varying from 10−2a to 20a, the
value of reaction rate k is shown in Fig. 9. The long dashed
line �− − � and solid line �——� denote the theoretical results
in the case of nonresonance, which are obtained from Eq.
�25�. The short dashed line �------� and dash-dotted line
�−-− � denote the theoretical results in the case of resonance,
which are obtained by solving Eq. �38�. The symbols • and
� denote the corresponding digital simulation results. It can
be seen that k reaches its maximum at �=4a corresponding
to the linear frequency ratio �1 :�2=1:2. Comparing with

the nonresonant case, it is shown that Fermi resonance can
enhance reaction rate by about 156% for theoretical results
�176% for simulation results� when �U /kBT=1, and about
201% for theoretical results �285% for simulation results�
when �U /kBT=2. For predicting the reaction rate k in a
large range of � varying from 10−2a to 20a, it is necessary to
use Eqs. �25� and �38� alternatively for the nonresonant and
resonant cases. Comparing with Fig. 6, a greater difference
between the theoretical result and the simulation result can
be observed in Fig. 9 due to the linear approximation
U0�x1��ax1

2.

V. TRANSITION RATE OF TOTAL ENERGY
IN THE CASE OF STRONG COUPLING

The theoretical results obtained in Secs. III and IV are
based on the assumption of weak coupling. In the case of
strong coupling, the reacting oscillator and the exciting os-
cillator in Eq. �1� will move together as one oscillator rather
than separately and the system can be regarded as a quasi-
non-integrable Hamiltonian system. In this case, it is more
reasonable to consider the dynamical behavior of the follow-
ing Hamiltonian H �the system total energy�:

H = v1
2/2 + v2

2/2 + U�x1,x2� , �46�

where the potential U�x1 ,x2� has been defined in Eq. �45�. As
reported in Ref. �22�, the stochastic averaging method for a
quasi-non-integrable Hamiltonian system �24� yields the fol-
lowing mean time for Hamiltonian process H�t� reaching a
threshold value EC for the first time given initial Hamiltonian
H0�EC:

��H0� = 2�
H0

EC

du�
0

u 1

�2�v�
exp�− 2�

v

u m�w�
�2�w�

dw�dv ,

�47�

where the drift coefficient m�H� and diffusion coefficient
�2�H� read

m�H� = 2�kBT − 2�H + 2�G�H� ,

�2�H� = 4�kBTH − 4�kBTG�H� ,

FIG. 10. The transition rate k of the total energy of system �1�
with potential �45� with strong coupling for threshold value EC.
c=1, a=1, b=1, �=4a, and �U /kBT=2.

FIG. 8. The reaction rate k of system �1� with potential �45� for
potential barrier �U=2kBT. The linear frequency ratio is �1 :�2

=1:2 and the other parameters are the same as those in Fig. 7. The
lines denote the theoretical results and symbols denote the corre-
sponding simulation results.

FIG. 9. The reaction rate k of system �1� with potential �45� as a
function of �. c=0.1 and the other parameters are the same as those
in Fig. 8. The theoretical results for the nonresonant case are ob-
tained from Eq. �25� and those for the resonant case are obtained by
solving Eq. �38�.
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G�H� =
/

�

U�x1,x2�dx1dx2�/
�

dx1dx2,

� = ��x1,x2��U�x1,x2� 
 H� . �48�

Note that the theoretical result �47� is applicable for all kinds
of potential U�x1 ,x2�. Here, the potential �45� is employed.

In Figs. 10–12, some theoretical results for ��H0=0� and
corresponding simulation results are shown to illustrate the
validity of the theoretical method and the effects of param-
eters EC, �, and c on transition rate k. It is seen from Fig. 10
that the transition rate k decreases as the threshold value EC
increases and the theoretical results are useful in the weak
damping case. It is seen from Fig. 11 that the transition rate
of system total energy does not change much at resonant
frequency �=4a. Figure 12 shows that the coupling coeffi-
cient c has no remarkable influence on the transition rate of
system total energy provided c is larger than 1.

VI. CONCLUSIONS

In the present paper, the deterministic averaging method
has been used to explain the necessary frequency ratio 1:2
for Fermi resonance to occur in coupled exciting and react-
ing oscillators. Two stationary samples have been obtained
from digital simulation to show more frequent and more sig-
nificant fluctuation in energy process due to Fermi reso-
nance. The standard stochastic averaging method has been
used to study the Fermi resonance between the exciting os-
cillator and reacting oscillator in the case of weak damping
and weak coupling. Through solving the Pontryagin equation
for an averaged system, the mean transition time of the re-
acting oscillator over an energy threshold value EC has been
obtained for both resonant and nonresonant cases. The ob-
tained results are then verified by comparing with the results
obtained from digital simulation. It has been shown that the

mean transition time ��E10, Ē20,�0� in the case of Fermi

resonance decreases as initial energies of E10 or Ē20 increase.
The mean transition time reaches maximum and minimum,
respectively, at initial phase angle difference �0=	 /2 and
3	 /2. As the energy threshold value EC increases, the mean
transition time increases correspondingly. While the coupling
coefficient c increases, the mean transition time decreases.
By observing a broad range of frequency ratio, it was found
that the mean transition time in the resonant case is remark-
ably lower than that in the nonresonant domain, which im-
plies that the Fermi resonance leads to an increase of the
transition rate due to the energy exchange between exciting
oscillator and reacting oscillator. As a further investigation,
the Fermi resonance in a two-dimensional system with a
bistable potential has been studied. Under the linear approxi-
mation U0�x1��ax1

2, the transition rates in a reacting oscil-
lator in both the resonant and nonresonant cases have been
predicted. When there is no coupling between the exciting
and reacting oscillators, the theoretical result is the same as
Kramer’s result for weak damping. In the case of strong
coupling, the system should be regarded as a quasi-non-
integrable Hamiltonian system and no Fermi resonance can
occur. In this case, the transition rate of system total energy
H over an energy threshold value EC has been obtained by
solving a Pontryagin equation after applying the stochastic
averaging method for quasi-non-integrable Hamiltonian sys-
tems. Finally, good agreement between theoretical results
and simulation results has been achieved.
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FIG. 12. The transition rate k of the total energy of system �1�
with potential �45� in the strong-coupling case for threshold value
EC as a function of coupling coefficient c. �=0.01 and the other
parameters are the same as those in Fig. 10.

FIG. 11. The transition rate k of the total energy of system �1�
with potential �45� in the strong-coupling case for threshold value
EC as function of parameter �. �=0.01 and the other parameters are
the same as those in Fig. 10.
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